The general formula for rotational averages

Reed Nessler1,2 and Tuguldur Begzjav1

1TAMU IQSE, College Station TX
2Baylor University, Waco TX

Spectroscopic applications require finding uniform rotational averages of nth rank three-dimensional tensor quantities. This problem reduces to calculating a tensor $I^{(n)}$ formed by averaging products of n direction cosines:

$$I^{(n)}_i \cdots i_n \lambda_1 \cdots \lambda_n = \langle l_i \lambda_1 \cdots l_n \lambda_n \rangle = \int_{SO(3)} dg \ l_i \lambda_1(g) \cdots l_n \lambda_n(g).$$

Previous writers$^{[1]}$ express $I^{(n)}$ as a trigonometric integral over Euler angles only to shy away from integrating it: instead they find a systematic expansion in “basic” (Kronecker and Levi-Civita) isotropic tensors. While ingenious this method has not been extended past rank $n = 8$, where it already entails a coefficient matrix that occupies an entire page of typescript.$^{[2]}$

We by contrast find a formula for $I^{(n)}$ that is valid for all ranks, fits within a few lines of print or code, and is trivial to run on a computer. In short we decompose the Euler integral representation into a sum of Euler beta integrals, then perform some manipulations to obtain a completely elementary expression.

Beyond clearing the path for any three-dimensional cartesian tensor to be averaged, our formula provides a friendly base for deriving further results. As illustration we obtain simple criteria to determine when $I^{(n)} = 0$ and observe a connection to Wigner’s D-matrix.

Figure: the component $\langle l_{18} l_{16} l_{13} l_{14} l_{15} l_{16} l_{17} l_{18} l_{19} l_{21} l_{22} l_{23} l_{24} l_{25} l_{26} l_{27} l_{28} l_{29} l_{30} l_{31} l_{32} l_{33} l_{34} l_{35} l_{36} l_{37} l_{38} l_{39} l_{40} l_{41} l_{42} l_{43} l_{44} l_{45} l_{46} l_{47} l_{48} l_{49} l_{50} l_{51} l_{52} l_{53} \rangle$ of $I^{(195)}$, a number that we wager is making its print debut here. Our program finds it within seconds.