Quantum information scrambling and hybrid machine learning with trapped ions

1Joint Quantum Institute, University of Maryland, College Park, MD 20742, USA
2IonQ Inc., College Park, MD 20740, USA

Trapped ions are a promising candidate to realize a scalable quantum computer. We present a system comprised of a chain of 171Yb$^+$ ions with individual Raman beam addressing and individual readout (see Fig. 1). This fully connected processor can be configured to run any sequence of single- and two-qubit gates, making it an arbitrarily programmable quantum computer [1, 2].

We use this versatile system to perform a teleportation-based protocol to verify quantum information scrambling (see Fig. 2). This phenomenon describes the dispersal of local information into many-body entangled systems, and has recently been conjectured to shed light on the black-hole information paradox [3].

Quantum-classical hybrid systems offer a path towards the application of near-term quantum computers to different optimization tasks. We present several demonstrations relating to machine learning in such a hybrid approach. They include finding the ground state binding energy of the deuteron nucleus, the training of shallow circuits (see Fig. 3), and the preparation of quantum critical states using a quantum approximate optimization algorithm (QAOA) scheme. We also mention concepts for scaling up this architecture locally, and for networking it with entangled photons.