Hanbury Brown and Twiss (HBT) demonstrated an interference effect between two light intensities [1]. In fact, using the correlation between two different points on Sirius, which is a random/thermal light source, they determined its angular size. Classen and coworkers [2] proposed to use the HBT effect for molecular imaging. Here, by treating the heavy atoms as random light emitters, they suggest that the intensity correlation from the x-ray fluorescence of the heavy atoms can be exploited for retrieving high-resolution structural information. Motivated by the work by Classen and coworkers [2], we theoretically examined the fluorescence spectrum of a nanocluster from XFEL pulses with our MC/MD method [3]. As a first step, using Ar clusters as a prototype, we focused on fluorescence processes in intense x-ray fields. We found that non-linear x-ray absorption leads to a high-degree of ionization and creates a dense electron environment within the sample on the femtosecond timescale. Already during the pulse, electron-ion recombination and massive electron rearrangement begin to transform the exposed cluster into core-shell structure (neutral core and highly charged shell). These ultrafast processes produce x-ray emission profiles in an extended sample that are very different from the atomic profile [4]. Most notably, in addition to the direct photoionization pathways, electron-ion recombination processes provide additional pathways to reach the same fluorescence channels and gives rise to higher Kα and KαH yields in clusters (Figure 1). Depending on the fluorescence channels involved, the presence of the recombination pathway leads to extended fluorescence emission time beyond the lifetime of the core-excited states. We show that the KαH emission line can be a good candidate for incoherent imaging as it has relatively short emission time (a few femtosecond) compared to the x-ray induced distortion time [3].

References: