Sign-definite coherence, coherent population trapping, frequency doubling, and lasing without inversion in open driven three-level V and Λ systems

Gavriil Shchedrin, Nathanael C. Smith, Gijs Groeneveld, Daniel Jaschke, and Lincoln D. Carr

Colorado School of Mines, Golden, CO, 80401, USA

We explore open driven V and Λ three-level systems coupled to an environment with dynamics governed by the Lindblad master equation. We perform a transformation into superoperator space, which brings the Lindblad equation into a Schrödinger-like form, thus allowing us to obtain exact analytical solutions for the density matrices of the V and Λ systems in a closed form. We establish physical conditions under which coherent manipulation of these systems results in quasi-stationary dynamics, sign-definite coherence, coherent population trapping, electromagnetically induced transparency, and lasing without inversion. We show that the quasi-stationary dynamics and sign-definite coherence in a driven Λ system can be obtained by matching the applied Rabi frequencies with the decay rate induced by the interaction with the environment. We find that the laser-induced Autler-Townes doublet splitting in a driven closed Λ system transforms into a quadruplet in the presence of interaction with an environment. Finally, we demonstrate anomalous light propagation and continuous lasing without inversion for an open V system driven by a continuous wave laser.

FIG. 1: Sketch of open driven three-level systems in (a) Λ and (b) V configurations. The initial state is prepared in the ground state $|\psi(t = 0)\rangle = |b\rangle$. The Rabi frequencies, $\Omega_p = d_{ab}E_p/\hbar$ and $\Omega_c = d_{ac}E_c/\hbar$ are expressed in terms of the dipole moments d_{ab} and d_{ac}, and amplitudes of the applied electric fields E_c and E_p. The environment-induced decay rates from the excited state $|a\rangle$ to $|b\rangle$ and $|c\rangle$ states are given by γ_p and γ_c respectively. The imaginary part of the susceptibilities, $\text{Im}[\chi(\nu)]$, as a function of detuning Δ and dimensionless time γt are shown for driven (c) Λ and (d) V systems. Vanishing susceptibility results in electromagnetically induced transparency and an extreme slowdown of the group velocity of light propagation.