Matter wave interferometry for inertial sensing and tests of fundamental physics

Leibniz Universität Hannover, Institut für Quantenoptik, Welfengarten 1, 30167 Hannover, Germany

Today’s state-of-the-art atom inertial sensors require improvements in stability and accuracy in order to fully exploit their potential with large scale factors on very long baselines on ground and in space, as well as in dynamic environments, e.g. for inertial navigation. We report on recent developments concerning the commissioning of the Very Long Baseline Atom Interferometry test stand. Stretching over 15 m, the facility with its high-performance magnetic shield, Rb-Yb atom sources, and a low-frequency seismic attenuation system will allow us to take on the competition with the stability of superconducting gravimeters with absolute measurements. By operating in a differential mode, we furthermore anticipate tests of the Universality of Free Fall at levels of parts in 10^{13} and below [1,2]. We will moreover report on matter wave sensors enhanced with opto-mechanical resonators [3] as well as fully guided interferometry and discuss the potential of such systems in inertial sensing and fundamental physics.

The VLBAI test stand facility is funded by the DFG. We also acknowledge financial support from DFG through CRC 1227 (DQ-mat), project B07. The presented work is furthermore supported by CRC 1128 (geo-Q), project A02, by the Federal Ministry of Education and Research (BMBF) through the funding program Photonics Research Germany (contract number 13N14875), the German Space Agency (DLR) (PRIMUS-III; Grant No. 50WM1641), and by “Niedersächsisches Vorab” through the “Quantum- and Nano-Metrology” (QUANOMET) initiative within the project QT3.

References