Emergent electrodynamics in a quantum antiferromagnet

Tigran A. Sedrakyan

Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003 USA

Abstract

In this talk, I will discuss the stability of ordered states in a two-dimensional quantum spin-1/2 J_1-J_2 antiferromagnet on a frustrated triangular lattice. In the presence of next-nearest-neighbor antiferromagnetic coupling, J_2, the model is shown to undergo a continuous transition from 120° ordered state to a quantum U(1) Dirac spin-liquid (QED$_3$) at $J_2/J_1 \sim 0.089$, in accordance with previous variational Monte-Carlo and DMRG studies. The Maxwell U(1) gauge field emerges in a narrow parameter interval of $0.089 < J_2/J_1 < 0.116$, that stabilizes the spin liquid. I will discuss the interplay of ordering and the emergence of the gauge field in the vicinity of unconventional criticality.

References:

